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Abstract: Estimating ages of individuals in fish populations is crucial for determining characteristics necessary to effectively
manage sport fisheries. Currently, the most accepted approach for fish age determination is using thin sectioned otoliths for
interpretation. This method is labor-intensive, requires extensive training, and subjectively determines age. Several studies
have shown that otolith mass increases with age, yet use of otolith mass to determine fish age is relatively underutilized.
However, determining fish age using otolith mass requires relatively little training, is relatively nonsubjective, and is faster
compared with other aging techniques. We collected kokanee salmon (i.e., landlocked sockeye salmon, Oncorhynchus nerka)
in 2004 from four reservoirs and from 2000 to 2009 in one reservoir to evaluate the efficacy of using otolith mass to deter-
mine fish ages. We used a machine learning technique to predict kokanee salmon ages using otolith mass and various other
covariates. Our findings suggest this method has potential to substantially reduce time and financial resources required to
age fish. We conclude that using otolith mass to determine fish age may represent an efficient and accurate approach for
some species.

Résumé : L’estimation de l’âge des individus au sein de populations de poissons est essentielle à la détermination de ca-
ractéristiques nécessaires à une gestion efficace de la pêche sportive. La méthode de détermination de l’âge des poissons la
plus largement acceptée à l’heure actuelle repose sur l’interprétation de lames minces d’otolithes. Il s’agit d’une méthode la-
borieuse qui nécessite une formation poussée et qui établit l’âge de manière subjective. Si plusieurs études ont démontré
que la masse des otolithes augmente avec l’âge, l’utilisation du poids des otolithes pour déterminer l’âge des poissons de-
meure une approche relativement sous-utilisée. Pourtant, cette méthode nécessite une formation relativement peu poussée et
est moins subjective et plus rapide que d’autres méthodes de détermination de l’âge. Nous avons prélevé des saumons rou-
ges (Oncorhynchus nerka) de quatre réservoirs en 2004 et d’un réservoir de 2000 à 2009 dans le but d’évaluer l’efficacité
d’utiliser le poids des otolithes pour déterminer l’âge des poissons. Nous avons fait appel à une technique d’apprentissage
automatique pour prédire l’âge de saumons rouges à partir du poids des otolithes et de diverses autres covariables. Nous ré-
sultats suggèrent que cette méthode pourrait permettre des réductions significatives du temps et des ressources financières
nécessaires pour déterminer l’âge de poissons. Nous concluons que cette méthode constitue une approche efficiente et exacte
de détermination de l’âge des poissons pour certaines espèces.

[Traduit par la Rédaction]

Introduction

Fish age interpretation is often an essential component of
stock assessments and subsequent management of valuable
fisheries globally (Francis and Campana 2004). Currently,
the most commonly used methods to interpret fish ages rely
on estimates derived from length–frequency relationships or
hard structures from individual fish, including otoliths,
spines, scales, fin rays, and cleithra. Fish age interpretation
from hard structures requires a trained age interpreter
(“reader” from here forward) to accurately estimate the age

by distinguishing annuli formed during periods of varying
growth (seasons). However, age interpretations of fish hard
structures are subjective, and their accuracy depends largely
on reader experience, as well as the experience of those pre-
paring the hard structures for age interpretation. Preparation
of hard structures (otoliths and spines) for fish age interpreta-
tion generally include the time- and labor-intensive proce-
dures of embedding, sectioning, polishing, and imaging
under magnification. Researchers have avoided these proce-
dures in the past by using relatively easy to prepare scale
samples for fish age interpretation, but this method has
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largely been abandoned, as it is considered inaccurate when
compared with otolith and spine aging methods (Erickson
1983; Welch et al. 1993; Maceina and Sammons 2006).
Thus, widely accepted fish aging methods generally require
time-consuming and costly preparation methods and person-
nel training.
Fisheries scientists have explored the utility of using oto-

lith mass to estimate fish ages in the past. Otoliths provide a
useful indicator of fish age because slow-growing, long-lived
fish tend to have relatively heavy otoliths, while fast-growing,
younger fish tend to have relatively light otoliths (Radtke et
al. 1985). This method has potential benefits because it limits
the amount of subjectivity in fish age interpretation and per-
sonnel training generally required when designating fish ages
using hard structures. In addition, this method has been
found to be more accurate for assigning fish ages when com-
pared with the most commonly used nonsubjective fish aging
technique (i.e., length–frequency relationships) in several spe-
cies evaluated (Boehlert 1985; Fletcher 1991; Francis and
Campana 2004). Though assigning fish ages using otolith
mass has been applied in several studies over the past three
decades, these efforts have been primarily focused on salt-
water fish species, with a few examples from brackish fish
species, and only one example from a freshwater species
(conducted in a laboratory) of which we are aware (Mose-
gaard et al. 1988).
Although aging fish using otolith mass shows promise,

other factors can be incorporated into modeling efforts to
more accurately predict fish ages (Francis and Campana
2004). For example, fish length is often highly correlated
with fish age (as well as otolith mass) and could provide ad-
ditional useful information for predicting fish age. Further, in
several studies, fish sex was found to influence variation in
otolith mass (Wilson et al. 1991; Fletcher 1995; Vallisneri et
al. 2008). It has also been shown that the location of collec-
tion of fish of the same species can influence otolith mass
(Worthington et al. 1995). Finally, annual variation has been
shown to occur in otolith masses of fish of the same species
collected over time (Pilling et al. 2003; Lou et al. 2007). In
many systems, these variables are relatively easy to measure
and should be incorporated when they have potential to in-
crease fish age prediction accuracy and precision.
In this study, we evaluated the utility of using otolith mass

(coupled with fish length, sex, and collection information) to
designate fish ages. We selected to study landlocked popula-
tions of sockeye salmon (i.e., kokanee, Oncorhynchus nerka)
in four Colorado (USA) reservoirs because of their relatively
short lifespan (generally dying after 2–4 years of growth),
relatively fast growth, and important role (i.e., providing fish
for harvest by anglers, eggs for future stocking efforts, and
forage for other sport fish) in fisheries in the western United
States and Canada (Wydoski and Bennett 1981; Rieman and
Myers 1992; Johnson et al. 2002). Thus, understanding the
population age structure of kokanee salmon and developing
appropriate management strategies and objectives for this
species are crucial throughout their range. We used ages in-
terpreted from sectioned kokanee salmon otoliths as training
data to predict individual fish ages. Further, we included fish
otolith mass, length, sex, day of capture, system of origin (in
an analysis evaluating reservoir as a covariate), and year of
capture (in a separate analysis evaluating year as a sequence

of indicator covariates) in the model. Fish age prediction was
performed using a random forests (RF) approach: a nonlinear
machine learning statistical tool rarely used in fisheries sci-
ence, but highly useful for prediction (Breiman 2001; Cutler
et al. 2007). Specifically, this method allows for the inclusion
of correlated variables with predictive power (e.g., fish length
and otolith mass) into a single model, while this multicolli-
nearity can be problematic in many other approaches. Fur-
ther, the RF approach simultaneously accounts for
interactions and nonlinear effects of all variables included in
predictive models. This approach is the first to use otolith
mass, of which we are aware, to assign ages to freshwater
fish outside of the laboratory.

Materials and methods

Kokanee salmon were collected in 2004 from Blue Mesa
(Gunnison County, Colorado, USA), Granby (Grand County,
Colorado, USA), Shadow Mountain (Grand County, Colo-
rado, USA), and Williams Fork (Grand County, Colorado,
USA) reservoirs. To evaluate the relative importance of tem-
poral variability in our analyses, kokanee salmon were also
collected from 2000 to 2009 in Williams Fork Reservoir. Ko-
kanee salmon were collected during spawning runs (Septem-
ber to November) at annual egg-take operations conducted by
Colorado Parks and Wildlife. Sex and length of the fish were
recorded, and both sagittal otoliths were extracted, removed
from the sacculus, cleaned (all tissue removed), and archived
in coin envelopes. Sagittal otoliths were weighed only when
intact (i.e., no missing chips or pieces) to the nearest micro-
gram, and mean masses of the left and right otolith were cal-
culated. If one sagittal otolith was missing or damaged, the
mass of the remaining otolith was used for analyses to in-
crease sample size. Left and right otolith masses were highly
correlated (linear regression; F = 2657, N = 276, p < 0.01)
with a slope ∼1. A paired two-sample t test showed that left
and right otolith masses were not significantly different (t sta-
tistic = 1.65, N = 276, p = 0.10).
Kokanee salmon ages were interpreted to inform the RF

model by assigning ages to randomly selected fish (≥15 males
and ≥15 females) from each reservoir and each year (2000–
2009 in Williams Fork Reservoir). These sectioned otoliths
(N = 429) represented a subset of fish that were to be aged
outside of the scope of this study (N = 2210 fish). Intact left
sagittal otoliths (based on precedence set historically in Colo-
rado) were embedded in Epofix embedding resin and sec-
tioned using a Buehler IsoMet 1000 low speed precision saw
with a 15.24 cm diamond wafering blade rotating at
350 r·min–1 (1 r = 2p rad). Transverse thin sections were pol-
ished using 600 grit, followed by 1000 grit sandpaper. Finally,
the otolith thin sections were immersed in mineral oil, placed
on a microscope slide, and photographed with an InfinityX-
21C camera (Lumenera Corporation) under 25× magnification.
Ages were interpreted from these images by two independent
readers. When the two readers disagreed (only two instances
in our case), a third reader was used to settle the disagreement.
All kokanee salmon ages are presented as whole numbers rep-
resenting complete annuli, though a large amount of growth
had taken place after the last complete annuli, considering the
fish were sampled in the fall of each year.
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Statistical analyses
We used a nonlinear machine learning technique (RF) to

predict kokanee salmon ages (Cutler et al. 2007) with two
approaches. In the first approach, we used data from kokanee
salmon collected in 2004 from Blue Mesa, Granby, Shadow
Mountain, and Williams Fork reservoirs to evaluate the rela-
tive importance and effectiveness of using kokanee salmon
length, otolith mass, sex, location of collection, and collec-
tion day of year as predictors of kokanee salmon age. In the
second approach, we used data from kokanee salmon col-
lected from 2000 to 2009 from Williams Fork Reservoir to
evaluate the relative importance and effectiveness of using
kokanee salmon length, otolith mass, sex, year of collection,
and collection day of year as predictors of kokanee salmon
age. The first approach was used to evaluate the relative im-
portance of reservoir as a predictor of kokanee salmon age,
and the second approach was used to evaluate the relative
importance of year as a predictor of kokanee salmon age.
The RF approach represents an ideal tool for prediction be-

cause it is based on a form of cross-validation, is entirely
nonlinear, accounts for obscure interactions, and simultane-
ously evaluates multicollinear variables (Breiman 2001; Cut-
ler et al. 2007). Where other approaches (e.g., linear models)
preclude the inclusion of multicollinear variables and thus the
exclusion of potentially valuable predictive data, the RF ap-
proach can incorporate all readily available data for predic-
tion. In our case, kokanee salmon length and otolith mass
are often highly correlated, and with most approaches, one
variable or the other would need to be excluded from any
single predictive model. Using the RF approach allowed us
to incorporate all variables of interest that were easily ob-
tained during kokanee salmon spawning operations (kokanee
salmon length, otolith mass, sex, collection day of year, year
of collection, and location of collection).
The RF approach falls under a much larger class of ma-

chine learning methods, commonly used in applications
where prediction is of primary interest (e.g., banking and
marketing). The concept of “bagging” is the key to their suc-
cess in that it essentially refers to the method of fitting re-
gression trees to numerous bootstrapped versions of the
training data (i.e., observations sampled with replacement
from the larger data set). The resulting trees are then model-
averaged to yield a predictor with low bias and variance. The
RF method itself is an improvement over the standard bagged
regression tree approach because it lowers the variance fur-
ther by reducing correlation among the trees through random
selection of the covariates. As a more detailed description of
random forests is beyond the scope of this article, we refer
the interested reader to chapter 15 of Hastie et al. (2009) for
further information. From a practical perspective, RF meth-
ods require very little algorithmic tuning and are therefore
much more user-friendly than alternative machine learning
predictive approaches. To perform our RF analyses, we used
the “randomForest” package (Liaw and Wiener 2002; pack-
age 4.6–6) in R (R Development Core Team 2011). A regres-
sion approach was used, and all predicted kokanee salmon
ages were rounded to the nearest whole number to classify
individuals by age-class. This was done because kokanee sal-
mon had discrete year classes in the study systems, being
raised from eggs in hatcheries, stocked in the spring, and
sampled in the fall while collecting eggs during their spawn-

ing runs to begin the cycle again. This approach would also
be useful if fish ages are desired at a subannual scale, but the
method that satisfies the research need and provides the least
amount of misclassification based on cross-validation should
be used.
In both RF implementations described here, 2000 regres-

sion trees were used to calculate accuracies and error rates
for each observation using out-of-bag predictions (i.e., pre-
dicting data that were withheld from each tree). The predic-
tion of data that were not used to fit the model can be
considered as a form of cross-validation. Variable importance
can then be assessed by comparing the increase in (i) mean
squared prediction error and (ii) node purity associated with
each individual covariate. We refer the interested reader to
Gini (1912), Liaw and Wiener (2002), and Cutler et al.
(2007) for more information.

Effort determination
Approximate effort, in the form of personnel hours, was

documented during sample preparation and analysis to allow
for a qualitative comparison of the time expended aging fish
by otolith sectioning alone versus weighing otoliths to inform
the RF model. This comparison was qualitative because we
were unable to account for the amount of training and expe-
rience required for readers (i.e., cost of education and salary)
to become proficient at interpreting ages from otoliths, which
varies by the individual. However, the two approaches in-
volve different contributions of otolith reader effort: a rela-
tively large amount of effort when sectioning and aging
otoliths and a relatively small amount of effort when weigh-
ing otoliths to inform the RF model.

Results
The RF approach predicting kokanee salmon ages from

fish collected from Blue Mesa, Granby, Shadow Mountain,
and Williams Fork reservoirs in 2004 had an overall error
(an error defined from here forward as age misclassification
relative to ages determined from sectioned otoliths) rate of
9.2% (Table 1). In this analysis, kokanee salmon length, oto-
lith mass, sex, location of collection, and collection day of
year were included as covariates for predicting kokanee sal-
mon ages. Based on the variable importance indices of in-
crease in mean square prediction error and node purity,
kokanee salmon otolith mass, length, collection day of year,
location of collection, and sex had the most predictive value,
in that order (Fig. 1). Of the 11 kokanee salmon predicted
ages (out of 120) that did not agree with ages determined
from sectioned otoliths, seven (64% of those misclassified)
were age-4 fish (Table 1) and constituted the largest source
of error with respect to age-class.
The RF approach predicting kokanee salmon ages from

fish collected from Williams Fork Reservoir from 2000 to
2009 had an overall error rate of 7.4% (Table 2). In this anal-
ysis, kokanee salmon length, otolith mass, sex, year of col-
lection, and collection day of year were included as
covariates for predicting kokanee salmon ages. Based on the
variable importance index of increase in mean square predic-
tion error, kokanee salmon otolith mass, length, year of col-
lection, collection day of year, and sex had the most
predictive value, in that order (Fig. 2). Based on the variable
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importance index of increase in node purity, kokanee salmon
otolith mass, length, collection day of year, year of collec-
tion, and sex had the most predictive value, in that order
(Fig. 2). Of the 25 kokanee salmon predicted ages (out of
339) that did not agree with ages determined from sectioned
otoliths, 14 (56% of those misclassified) were age-4 fish (Ta-
ble 2) and constituted the largest source of error with respect
to age-class.
Across both analyses, the RF approach error rate never ex-

ceeded 20% in any reservoir or year. Further, the RF ap-
proach only exceeded an error rate of 10% in reservoirs and
years that had relatively high numbers of age-4 kokanee sal-
mon. Every kokanee salmon determined to be age-4 with
sectioned otoliths (N = 21 out of a total of 429 sectioned oto-
liths) was categorized as age-3 using the RF approach.
Across both RF analyses, when age-1 and age-2 kokanee sal-
mon (determined using sectioned otoliths) were misclassified,
they were overestimated by 1 year. Across both RF analyses,
when age-3 and age-4 kokanee salmon (determined using
sectioned otoliths) were misclassified, they were underesti-
mated by 1 year.
Based on our evaluation of effort expended during otolith

weighing and otolith preparation, sectioning, and aging, we de-
termined that using otolith mass coupled with a subset of sec-
tioned otoliths for aging to inform the RF modeling approach
was approximately five times faster than preparing, sectioning,
and aging an otolith from each individual in this study. We
were able to rapidly predict the ages of 429 kokanee salmon

using the approach described here. If we were to use the in-
formed RF models to estimate the ages of more fish from the
cohorts analyzed here, otolith mass would be the only addi-
tional data required. Thus, the more fish ages that are predicted
with this approach, the more cost effective it would become
relative to sectioning an otolith from every individual.

Discussion
The results of our RF approach using otolith mass coupled

with a variety of other covariates to predict kokanee salmon

Table 1. Age misclassification by the random forests (RF) approach using ko-
kanee salmon (Oncorhynchus nerka) from four Colorado reservoirs in 2004.

Reservoir N % misclassified Ages misclassified
Blue Mesa 30 13.3 2,4,4,4
Granby 30 3.3 2
Shadow Mountain 30 3.3 2
Williams Fork 30 16.7 2,4,4,4,4

Note: Reservoir names are provided (Reservoir), the number of fish aged (N), and the
percentage and ages of fish misclassified.
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Fig. 1. Variable importance indices for classifying kokanee salmon (Oncorhynchus nerka) ages using the random forests (RF) approach with
reservoir as a variable. Fish were collected from four different reservoirs in Colorado from 2004. OM is otolith mass, TL is total length, DAY
is collection day of year, LAKE is the system from which an individual was collected, and SEX is the sex of an individual. MSE is mean
square error. Panel (a) represents increase in MSE, and panel (b) represents increase in node purity.

Table 2. Age misclassification by the RF approach using kokanee
salmon (Oncorhynchus nerka) from Williams Fork Reservoir from
2000 to 2009.

Year N % misclassified Ages misclassified
2000 30 6.7 3,4
2001 30 0 None
2002 30 10 2,4,4
2003 37 18.9 2,2,3,4,4,4,4
2004 30 13.3 4,4,4,4
2005 35 8.6 1,3,3
2006 33 3 2
2007 36 0 None
2008 37 2.7 3
2009 41 9.8 3,4,4,4

Note: Years of collection are provided, along with the number of fish
aged (N) and the percentage and ages of fish misclassified.
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age suggested that this method has promise as an alternative
to other methods. Error rates between the RF approach and
kokanee salmon ages determined from sectioned otoliths
were relatively low, with few predictable exceptions, and
were always within what is considered acceptable for many
standard fisheries assessments (Maceina et al. 2007; 20% er-
ror). Further, this approach is more efficient and less subjec-
tive when considering the amount of time and level of
training required to ensure personnel are properly embedding,
sectioning, polishing, and imaging otoliths, and subsequently
interpreting ages from these sections. We suggest that these
activities be restricted to highly trained individuals and that
these individuals’ time be used as efficiently as possible,
making the RF approach informed with a subset of sectioned
otoliths, coupled with otolith mass data, an attractive option
for maximizing the efforts of highly trained personnel.
The RF approach described here relies on aging a subset

of otoliths to inform the model; thus, subjectivity is not com-
pletely eliminated. However, once trained personnel have put
in relatively little effort sectioning and interpreting fish ages
from a subset of otoliths, there is very little limitation on
how many fish can be aged using the RF approach by weigh-
ing otoliths. Relatively untrained personnel can weigh hun-
dreds of otoliths in a single day, essentially eliminating any
subjectivity that they may impart on further analyses. Addi-
tionally, other available covariates that are easily obtained
(e.g., fish length, sex, sampling date, year and location, etc.)
can be incorporated in the RF modeling approach to increase
estimate precision without adding further subjectivity. Impor-
tantly, if otoliths in the subset to be aged after sectioning are
difficult to age because of poor sectioning, opacity, or other
challenges, they can simply be replaced by other better exam-
ples that readers have more confidence in, and the masses of
unsuitable otoliths can still be used to predict fish age.
We were able to obtain acceptable age interpretation preci-

sion (Maceina et al. 2007) with a subset of approximately
30–40 sectioned otoliths from each year or reservoir. These
subsets then allowed us to predict the ages of thousands

(2210) of kokanee salmon outside of the scope of this study.
Throughout the RF analyses we predicted all ages of kokanee
salmon well, except those that were age-4 (likely because of
low representation in the sample). Thus, in the future, we
will focus our sampling on particular groups of fish that are
underrepresented in the data set (e.g., age-1 and age-4 fish)
to systematically improve the error associated with the RF
approach. Currently, we are able to classify kokanee salmon
of all ages with confidence because we are sectioning the
otoliths from the smallest and largest individuals. It is impor-
tant to note that we started the RF analyses with a relatively
small subset of sectioned otolith samples to inform the RF
approach, and it still performed well. Therefore, this method
showed promise with relatively little effort from highly
trained personnel and might be improved with additional
minimal effort.
Based on the RF results, otolith mass was the most impor-

tant covariate for classifying kokanee salmon by age, fol-
lowed by length. These two predictors were more useful
relative to the collection day of year, the year and location of
collection, and sex. Many fishery assessments have relied on
length–frequency histograms to indicate the age structure of
fish populations (Pauly and Morgan 1987; Gulland and
Rosenberg 1992). Our results, and others, suggest that using
otolith mass may be a more accurate approach (Boehlert
1985; Fletcher 1991; Francis and Campana 2004). Addition-
ally, using the RF method allowed us to include correlated
covariates (otolith mass and fish length) to classify kokanee
salmon ages, which may be useful in other studies relying
on fish aging to determine the characteristics of a population
for management or research purposes. For example, Francis
and Campana (2004) suggested that although otolith mass
appeared to be a potentially useful predictor of fish age, age
predictions could benefit from multiple predictive variables
included in a single model. The flexibility of the RF ap-
proach allowed us to include several easy to collect covari-
ates increasing prediction precision, whether correlations
between the covariates existed or not.
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Fig. 2. Variable importance indices for classifying kokanee salmon (Oncorhynchus nerka) ages using the RF approach with year as a variable.
Fish were collected from Williams Fork Reservoir from 2000 to 2009 (YEAR). OM is otolith mass, TL is total length, DAY is collection day
of year, and SEX is the sex of an individual. MSE is mean square error. Panel (a) represents increase in MSE, and panel (b) represents
increase in node purity.
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Our evaluation of the efficiency of the RF model informed
with a subset of kokanee salmon ages interpreted from sec-
tioned otoliths showed that the method was approximately
fivefold faster than interpreting ages by preparing, sectioning,
and aging an otolith from each individual. This discrepancy
would increase as more otoliths were weighed for age estima-
tion. For example, we estimated the ages of 429 individuals
and used these data to inform the RF model. If we were to
use the informed RF model to estimate ages from an addi-
tional 1000 kokanee salmon by weighing otoliths (achievable
by relatively untrained personnel), the RF approach would be
fivefold more efficient than relying solely on otolith section-
ing (requiring highly trained personnel). These increases in
efficiency translate to monetary savings, especially when
considering the personnel training required to conduct each
approach. These findings corroborate those of others in
which they observed significant increases in efficiency by
aging fish with an approach using otolith mass (McDougall
2004; Cardinale and Arrhenius 2004; Steward et al. 2009).
Additionally, our evaluation is conservative and does not ac-
count for the time spent training personnel to properly handle
and interpret ages from otoliths. Thus, this method is very at-
tractive for rapidly and cost-effectively predicting fish ages as
long as the population is representatively sampled (an as-
sumption made in most statistical models).
We selected a short-lived, fast-growing fish species for the

analyses described here. Based on the observations of others,
this species was an ideal candidate for this research (Radtke
et al. 1985). The maximum age of kokanee salmon in our
study was four, limiting the amount of possible categories to
which a fish could be assigned. Although we selected this
species because of its favorable characteristics, our findings
suggest that this approach might prove useful for assigning
ages to other freshwater fishes. The method was more effi-
cient and less subjective, and the RF approach allows one to
include a multitude of multicollinear covariates in analyses to
classify fish age. The method described here has been
adopted to manage the kokanee salmon fishery in Blue Mesa
Reservoir, Colorado, which provides the majority of kokanee
salmon eggs to sustain fisheries throughout Colorado. Using
otolith mass to assign ages to freshwater fishes is essentially
absent from the literature, and we suggest coupling this ap-
proach with RF analysis could greatly increase our capabil-
ities of conducting age- and growth-based research, assessing
sport fish stocks, and management of valuable freshwater
fisheries.
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